
Minimizer-Space Suffix Array
Techniques: Implementation

and Analysis
Ryan El Kochta
UID: 117886092

relkocht@umd.edu

Tien Vu
UID: 117157321
vut@umd.edu

CMSC 701
Spring 2025

Abstract
The string search problem is a common problem across computer science, including bioinformatics. A
standard suffix array is a data structure that enables faster string searches in exchange for requiring

additional storage space. At the same time, minimizers are 𝑘-mers selected to represent some group of
𝑘-mers in a string. Combining the two results in a minimizer-space suffix array, a suffix array

computed not over characters but over minimizers representing some set of characters. In this paper,
we discuss our implementation of such a data structure, its performance, and its storage space

requirements. The implementation is open-source code which can be found at https://github.com/
cephi-sui/mssa.

1 Introduction
The string search problem is a common problem
across computer science, including bioinformatics.
In the string search problem, we are presented
with a reference string 𝑆, and we aim to find the
index of (as we consider, any occurrence) of a
query string 𝑄 in the reference string, if one exists.

The naïve approach to solving this problem
involves moving a sliding window of length |𝑄|
along the string 𝑆, and at each iteration comparing
the window to the query string 𝑄. We don’t need
any additional data structures to do this, but since
the strings must both be compared at each step,
this has time complexity 𝒪(|𝑆| |𝑄|), which is quite
slow.

An alternative approach is to use an index,
which is pre-computed and stored instead of the
original string, and allows faster lookups. A com-
mon index is the suffix array, wherein the indices
of each suffix are computed and stored in lexico-
graphical order. This allows a binary search to
be performed in 𝒪(|𝑄| log|𝑆|). This is better, but
in practice this is not fast enough for very large
strings.

For this project, we implemented a possible
accelerant for this algorithm from [1]. Specifically,
instead of computing the suffix array over the raw
bytes in the reference string, we compute the suffix
array over minimizers of the 𝑘-mers in the refer-
ence string. Consecutive windows (represented as
super 𝑘-kmers) with identical minimizers are de-

duplicated at build time, leading to a possibly
much smaller amount of data to be stored in
the index. At query time, queries are converted
into a sequence of super 𝑘-kmers (represented by
minimizers). We then perform the usual suffix
array binary search algorithm, but with (ideally)
smaller constants, since a relatively small number
of minimizers need to be compared rather than
comparing the query string to each suffix charac-
ter-by-character.

In this report, we describe the following. First,
we give some additional details about the mini-
mizer-space suffix array construction, and its con-
struction parameters 𝑘 and 𝑤. Next, we describe
our implementation of the above construction.
We then describe some interesting findings from
Sapling [2] and PLA Search [3], which gave us
another optimization that we implemented, based
on techniques for piecewise linear regression de-
scribed in [4] and implemented in the Rust crate
plr. Lastly, we describe another optimization in
maximizing the significance of minimizer matches
inspired by the original minimizer paper [5]. Fi-
nally, we visualize and discuss our results and
conclusions.

mailto:relkocht@umd.edu
mailto:vut@umd.edu
https://github.com/cephi-sui/mssa
https://github.com/cephi-sui/mssa

2 Methods

2.1 The Minimizer-Space Suffix Ar-
ray Construction

First, at construction time, the reference string is
split into 𝑘-mers, which are overlapping substrings
of length 𝑘 in the string. Then, the algorithm com-
putes the minimizer within each window (of con-
figurable size 𝑤) over the 𝑘-mers. Consecutively
identical minimizers are de-duplicated into super-
𝑘-mers and stored alongside their index range in
the underlying string.

As an example, consider the string:
GLOBGLOGABGA

Assuming 𝑘 = 5 and 𝑤 = 3, we obtain the follow-
ing windows of 𝑘-mers, along with the minimizers
within those windows (using lexicographical order-
ing):

GLOBG LOBGL OBGLO

LOBGL OBGLO *BGLOG*

OBGLO *BGLOG* GLOGA

BGLOG GLOGA LOGAB

*GLOGA LOGAB OGABG

LOGAB OGABG *GABGA*

The consecutively-de-duplicated minimizer chains
are stored:
• GLOBG

• BGLOG

• GLOGA

• GABGA

alongside an encoding of their start and end posi-
tions. These are known as super-𝑘-mers.

The suffix array is constructed over these
super-𝑘-mers, and at query time, the query string
is converted into a sequence of super-𝑘-mers and
a normal suffix array binary search is performed.
Many fewer comparisons (at least, in theory) are
performed, leading to possibly improved perfor-
mance. However, a brute-force over the resulting
super-𝑘-mer window must be performed on the
original string after finding a match, since the
minimizer chain matching is not certain to imply
an actual match. (We call the rate at which this
must happen the false positive rate).

2.2 Our Implementation
We created an implementation of the above con-
struction in Rust. Our implementation is struc-
tured as follows. We conceptually “transform” the
reference string into a minimizer-based string at
the beginning. We begin by compressing the al-
phabet from a list of raw bytes (each of which can
take on any value) into a new alphabet mapped

only from the characters that actually occur in
the string. For example, for a DNA sequence, the
alphabet size will be 4 (A, C, T, G), and as a
result each character only take up 2 bits in the
transformed alphabet.

2.2.1 𝑘-mer representation
The next problem is how to represent the 𝑘-mers
efficiently. For this, we have an enum Kmer that
represents a 𝑘-mer, and can either be the sentinel
𝑘-mer $ or a 𝑘-mer represented using an int vector,
which was mostly adopted from one group member
(Ryan)‘s implementation from Assignment #2.
The int vector implementation uses the rust bitvec
crate under the hood. (This was probably a mis-
take, as we will justify in a moment).

We were initially torn between three ways of
representing 𝑘-mers:
1. Representing them as just an index into the

underlying substring.
2. Representing them as a Rust slice into the

underlying substring.
3. Representing the owned sequence of characters

in the 𝑘-mer.
The issue we initially had with option 1 was
that this is unergonomic; every time we want to
access some property of the 𝑘-mer, we have to
pass around a reference to the underlying string
and index into it, in addition to making the error-
handling more tedious.

Our issue with option 3 was the asymptotic
space complexity of this approach; as 𝑘 grows
large, this requires well above linear space in the
size of 𝑆. Similarly with option 2, even though
Rust slices don’t store a copy of the underlying
data (and are basically just fat pointers with a
base and length), when we try to serialize this,
bincode/serde will create a copy of every 𝑘-mer,
which has the same space complexity issue as
option 3.

We settled upon option 3 upon realizing that
the maximum integer size we have in Rust on a 64-
bit machine is a u128; for an alphabet of size 4, this
means we can have up to 𝑘 ≈ 64 and still bound
the 𝑘-mer representation’s size to two machine
words of data. In the real world, this is plenty.

The mistake was using the exact IntVec struc-
ture that we used. As we later found, there is a
lot of overhead from this structure, from the bit
count that needs to be stored alongside of it to
the overhead from the implementation details of
the bitvec crate. (Accessing IntVec elements is also
indirect, since we have to follow a pointer to the
heap). We suspect that this is a primary driver of
our high memory usage; as we will discuss later,

we likely should have stored this as a u128 and
enforced that the 𝑘-mer fits within this bound.

2.2.2 Constructing the index
In addition to Kmers, we also have a KmerSequence
data structure, which stores a Vec<Kmer>, along with
occ, which stores the relative abundance of each 𝑘
-mer (to be used for different minimizer orderings,
as will be discussed).

After constructing an alphabet, a KmerSequence
is constructed from a byte string. From the
KmerSequence, a SuffixArray<T: QueryMode> is con-
structed; the QueryMode trait allows us to define
many different forms of queries. We implemented
the following query modes:
1. GroundTruthQuery, which performs the naïve

𝒪(|𝑆| |𝑄|) string search (not even with a suffix
array).

2. StandardQuery, which performs the basic mini-
mizer-space suffix array query, with no further
accelerants.

3. PWLLearnedQuery, which adds to the StandardQuery
a lookup in a piecewise linear approximation
function based on the first minimizer in the
query, significantly narrowing down the search
space. See Section 2.3.

The suffix array construction logic involves con-
structing a minimizer chain from the underlying
𝑘-mers and de-duplicating them into SuperKmer

structures, which encode both their start positions
and lengths (which are necessary for the “brute-
force” used to validate the minimizer chain at
the end of the query process). Currently, this is
implemented naïvely using an 𝒪(𝑛𝑘𝑤) algorithm.
We did implement a linear-time algorithm for this
using a monotonic queue, which did help index
construction time a bit, but unfortunately this
code was lost in a tragic git accident. The suffix
array is then naïvely constructed over this mini-
mizer chain.

The query logic is as described earlier.

2.3 Piecewise Linear Regression
(PLR) Accelerant

Sapling [2] describes an approach that relies on
a key observation: when binary searching for the
query string, because of the fact that the search
window grows in half at each iteration, there are
very few iterations at the beginning of the search
where the search window is too large to fit in
a single cache line. So if we had a function, say
𝑓(𝑥), that could, given the first 𝑚 minimizers
in 𝑄 represented as an integer 𝑥 (ordered in
the same way as the minimizer chain), give an
approximate location in the suffix array where 𝑄
would be placed in the given ordering, we could

shrink down to a cache line much more quickly,
possibly dramatically improving performance for
many queries.

During construction, given some function
𝑓(𝑥), we compute over all 𝑥 and then compare to
the true position in the suffix array. The maximum
delta between these two values for any 𝑥 is 𝐸,
and is configurable in our implementation as 𝛾.
So upon querying, we consult the function 𝑓(𝑥)
given the first minimizers of the query string, and
create a window from [𝑓(𝑥) − 𝐸, 𝑓(𝑥) + 𝐸]. These
are the initial bounds of the binary search.

How do we create this function, then? Sapling
describes two approaches: first, using a neural net-
work, and second, using a piecewise linear function
(PWL). We are interested in the second approach.
Essentially, the spectrum of all inputs 𝑥 is mod-
elled as a “roughly” linear function outputting the
position in the suffix array. Figure 1 shows the
ground-truth for this function for both coronavirus
and monkeypox genomes.

Figure 1: Suffix array positions over each k-mer,
with k=3, w=10

The idea is to model this function as a piecewise
function consisting of linear approximations, such
that we minimize the number of segments in the
piecewise function while guaranteeing a maximum
error bound for any evaluation of the function.

The thing we did not understand about the
approaches of [2] and [3] is: a suffix array position
for a set of beginning minimizers isn’t a single
position, it’s a range of positions. We do not
understand how both papers are able to sidestep
this; instead, we made two piecewise-approxima-
tion functions, one for the beginning of the range
starting with a sequence of minimizers and one for
the end of that range. That way, we are able to,
given a query string 𝑄, quickly determine the start
and end range, to within some maximum error
𝐸 = 𝛾. The bounds we begin the binary search at
are [𝑓begin(𝑥) − 𝐸, 𝑓end(𝑥) + 𝐸].

Abrar and Medvedev [3] point in the direction
of O’Rourke’s algorithm, which is implemented

in the Rust plr crate. We use the GreedyPLR with
a command-line-configurable 𝛾, and construct a
piece-wise linear regression-based approximation
of 𝑓begin(𝑥) and 𝑓end(𝑥) alongside suffix array con-
struction. We also simplify the construction by
only considering the first minimizer, which for
strings of the lengths we looked at was enough
to narrow down the search window to single-digit
percents of the full suffix array (depending on the
query and value of 𝛾). This helps to explain the
(small) performance increase we observe from this
query mode later on.

2.4 Minimizer Match Significance
In “Reducing storage requirements for biological
sequence comparison” [5], there is discussion on
the “orderings” of the alphabet used to determine
the minimizers. The paper uses a lexicographic
ordering of the alphabet but notes that it is not
desirable to do so because a string with consec-
utive characters will result in several consecutive
𝑘-mers being selected as minimizers. In terms of
minimizers as a concept, this “counteracts [the]
goal of sampling a fraction of the 𝑘-mers” [5]. The
paper goes on to suggest alternate orderings of
the alphabet, such as assigning values based on
frequency of a letter’s occurrence. In conclusion,
they state “in general, we want to devise our
ordering to increase the chance of rare 𝑘-mers
being minimizers, thus increasing the statistical
significance of matching minimizers.” [5]

In the context of this suffix array implemen-
tation, we would like to maximize the statistical
significance of matching 𝑘-mers. Doing so can
theoretically help with false positives – the cases
where the minimizers of a suffix array entry and
query match but the actual strings represented by
those minimizers do not. Moreover, false positives
are not computationally or temporally cheap as
they require manually comparing every character
for every matching super 𝑘-mer. Ideally, this would
never have to be performed; it must be performed
to prevent erroneously returning a match when
there was none. As such, reducing the number of
false positives reduces the total amount of raw
character comparisons.

Initially, our approach to increasing the statis-
tical significance of matching minimizers involved
following the paper directly and applying some of
the alternate alphabet orderings they proposed.
However, as previously quoted, the paper states
that the ultimate goal of these alternate orderings
is “to increase the chance of rare 𝑘-mers being
minimizers.” [5]. This suggests that alternate al-
phabet orderings were a means to an end – proxies
to make the process of selecting rare 𝑘-mers as

minimizers easier. Instead of comparing different
ways to order the alphabet such that we increase
this chance, what if we just maximized the chance
with a data structure?

In conclusion, false positives in this data
structure are a source of wasted computation
and time. The number of false positives can be
reduced by increasing the statistical significance of
matching minimizers. The statistical significance
can be increased by maximizing the chance that
rare 𝑘-mers are selected to be minimizers. This
chance can be maximized by creating a hash map
of every 𝑘-mer, storing the number of times they
appear, and using these occurrences to determine
the minimizer of any given 𝑘-mer window.

The creation of the hash map takes 𝒪(𝑛 −
𝑘) time and it just adds an additional 𝒪(1) com-
putation to the 𝑘-mer comparison for minimizer
determination. This implementation also has the
added benefit of filtering out query sequences
before the suffix array is ever queried. Since the
query needs its minimizers computed based on
the occurrence of 𝑘-mers in the reference string, if
the query ever has a 𝑘-mer that does not appear
in the hash map, then the query can be rejected
immediately and in 𝒪(𝑛 − 𝑘) time.

3 Results
In order to evaluate the performance of our suffix
array, we compared its performance building and
querying three datasets: complete sequences of two
viruses and one bacteria. The first virus – and
the smallest – was the Zika virus [6] weighing
in at 11,000 bases. The second virus was the
Monkeypox virus [7] weighing in at 196,000 bases.
And finally the bacteria was Chlamydia pneumo-
niae TW-183 [8] with 1.2 million bases. These
sequences were selected to obtain a spread of se-
quence lengths and types. Due to time constraints
and performance problems, we decided not to
experiment with longer sequences such as the Y
chromosome of Drosophila melanogaster [9]. Such
limitations are discussed further in Section 4.

For each sequence, we built and queried
three minimizer-space suffix arrays: a “standard
query” with lexicographical ordering of the 𝑘-mers
(hereby referred to as the baseline suffix array,
despite still being minimizer-based), another stan-
dard query with occurrence-based selection of the
minimizer 𝑘-mers as described in Section 2.4 (re-
ferred to hereon as just the occurrence suffix array
for simplicity despite not being related to alphabet
occurrence-based ordering), and a “piecewise lin-
ear function (PWL) learned query” which uses the
piecewise linear regression accelerant described in

section Section 2.3 using 𝛾 = 10. This will be
referred to as the PWL suffix array.

Subsequent visualizations will also display
each sequence based on length, since size is a major
reason for the results depicted. From left to right,
the sequences depicted are Zika, Monkeypox, and
Chlamydia.

Figure 2: Build Time vs. Sequence Length
k = 3, w = 3

Naturally, the suffix array must be built before it
can be queried. Figure 2 visualizes a comparison
of the build time for each suffix array. Note that
the PWL suffix array adds a small amount to
the build time over the baseline suffix array. This
contrasts heavily with the occurrence suffix array,
which adds quite a bit of build time.

This is great for the PWL approach and not
so much for the occurrence approach, since the
occurrence suffix array needs to iterate over the
set of every 𝑘-mer in the sequence, hash it, and
store an occurrence tally. Fortunately, we see that
this does not incur an extremely large storage
requirement in Figure 5 and provides a noticeable
performance increase in Figure 3.

Figure 3: Execution Time vs. Sequence Length
k = 3, w = 3

Once the suffix array is built, 100k queries are run
on each. These queries are randomly generated
with 90% of them being some random subsequence

from the sequence itself and the other 10% being
random sequences with the same alphabet as the
queried sequence.

We can see that the PWL suffix array per-
forms quite similarly to the baseline suffix array. It
manages to have a lower execution time for both
viruses but actually exceeds the baseline suffix
array for Chlamydia. This is likely due the 𝛾 stay-
ing constant across sequences instead of scaling
relative to the size of the suffix array.

We can also see that the occurrence suffix
array performs almost inverse to the other two
suffix arrays. For smaller sequences, it performs
worse, likely as the cost of looking up the occur-
rence of every 𝑘-mer in the query string outweighs
the benefits gained from doing so. However, for
Chlamydia, it shows a great performance increase
with about a 20% decrease in execution time com-
pared to the baseline suffix array. The next graph,
Figure 4, depicts why this may be the case.

Figure 4: False Positive vs. Sequence Length
k = 3, w = 3

As described in Section 2.4, the theory behind
selecting minimizers using 𝑘-mer rarity is that
it increases the significance of matching minimiz-
ers, thus decreasing the false positive rate and
the time and computation spent comparing non-
matching subsequences. Figure 4 confirms that
this approach works as the the occurrence suffix
array has just a fraction of the false positives that
the baseline does. For Chlamydia, the occurrence
SA has 45% fewer false positives than the baseline
suffix array. As per Figure 3, this translates quite
well into a decrease in execution time for longer
sequences.

Figure 5: Suffix Array Size vs. Sequence Length
k = 3, w = 3

Finally, Figure 5 compares the suffix array data
structure sizes, with all suffix arrays maintaining a
similar size. Notably, the PWL suffix array and the
baseline suffix array sizes are so similar that they
only have about 1 kB of difference between them
at most, demonstrating the PWL suffix array’s
high efficiency in storage. Also notably, these sizes
are about 100x the size of the original sequences.
For comparison, the suffix array created by us for
assignment one takes just 11 MB for Chlamydia.
Meanwhile, the FASTA file for Chlamydia pneu-
moniae TW-183 takes just 1.2 MB.

4 Discussion
For starters, the storage size of the suffix array for
both optimizations are poor because they extend
off of a poor base. There are quite a few overlooked
places where storage sizes could be cut down
drastically, such as our Kmer struct which stores
a (compressed) copy of the entire 𝑘-mer. Ideally,
we would use a different abstraction, such as our
KmerSequence struct, to store a compressed version
of the original string and then simply index into
the string to obtain 𝑘-mers. This is not only a large
consumer of storage space but also memory. When
attempting to construct the suffix array on chro-
mosome 1 of the human genome, we found that
our program actively consumed 20 GB of RAM.
Seeing as the sequence was 200 MB, this follows
the 100x sequence size pattern found previously
in Section 3. We found that this memory usage
occurs despite the fact that not all 𝑘-mers need
to be in memory during suffix array construction!
Unfortunately, we were not able to remedy this
problem given time constraints.

Notably, all of the results in Section 3 are
bound by 𝑘 = 3, 𝑤 = 3. Ideally, we would have
liked to see how other 𝑘 and 𝑤 values effect our
optimizations. Unfortunately, the volume of data
was not easy to parse for a succinct results section.

Similarly, we would have liked to see how varying
𝛾 Finally, we would have preferred to compare
against existing implementations of minimizer-
space suffix arrays but were unable to get them up
and running within time constraints.

One possible source of variation in our results
is the way queries were randomly generated on
a per-sequence basis for the purposes of bench-
marking. Originally, we used one constant set of
queries but found that it may affect execution time
for different sequences. This is because the match
rate would differ wildly between sequences given
the same shared set of queries, causing different
amounts of extraneous computation in the case
of non-matches. Our per-sequence query genera-
tion solved this problem, but introduced a new
one wherein two given runs of a specific suffix
array on a specific sequence could have slightly
different results. An easy solution to this would
to have generated a random set of queries for
each sequence and reused those queries instead of
generating them on a per-run basis.

One extension we would have loved to have
made is the use of a minimal perfect hash function
in the occurrence suffix array. Although the hash
map does not incur a huge storage penalty over
the baseline suffix array, we would be interested in
seeing much we could close the gap between them.
To this end, there would have been a great Rust
crate in the form of boomphf [10].

5 Conclusion
This paper was an interesting examination into an
alternate construction of suffix arrays and possible
optimizations to such constructions. We found
two optimizations to the basic idea outlined in
Section 2.2, piecewise linear regression and occur-
rence-based minimizer selection. Section 3 goes
over our findings, where we find mostly positive
results in execution time, very positive results
in false positive reduction, and negative results
in storage size. These results point a direction
forward for further research in minimizer-space
suffix arrays, especially since these optimizations
can be further fine-tuned. We also greatly enjoyed
learning about the developing such a data struc-
ture from the ground up (especially in Rust), even
if it meant that we were not able to spend as much
time optimizing it.

Bibliography
[1] B. Ekim, B. Berger, and R. Chikhi, “Mini-

mizer-space de Bruijn graphs: Whole-genome
assembly of long reads in minutes on a per-

sonal computer,” Cell Syst., vol. 12, no. 10,
pp. 958–968, Oct. 2021.

[2] M. Kirsche, A. Das, and M. C. Schatz,
“Sapling: accelerating suffix array queries
with learned data models,” Bioinformatics,
vol. 37, no. 6, pp. 744–749, 2020, doi:
10.1093/bioinformatics/btaa911.

[3] M. H. Abrar and P. Medvedev, “PLA-com-
plexity of k-mer multisets,” bioRxiv, 2024,
doi: 10.1101/2024.02.08.579510.

[4] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K.
Deng, “Maximum error-bounded Piecewise
Linear Representation for online stream ap-
proximation,” The VLDB Journal, vol. 23,
no. 6, pp. 915–937, Dec. 2014, doi: 10.1007/
s00778-014-0355-0.

[5] M. Roberts, W. Hayes, a. R. Hunt, S. M.
Mount, and J. A. Yorke, “Reducing stor-
age requirements for biologicaluence compar-
ison,” Bioinformatics, vol. 20, no. 18, pp.
3363–3369, 2004, doi: 10.1093/bioinformat-
ics/bth408.

[6] G. Kuno and G.-J. J. Chang, “Full-length
sequencing and genomic characterization of
Bagaza, Kedougou, and Zika viruses,” Arch
Virol, vol. 152, no. 4, pp. 687–696, Jan. 2007.

[7] S. N. Shchelkunov et al., “Human monkeypox
and smallpox viruses: genomic comparison,”
FEBS Lett, vol. 509, no. 1, pp. 66–70, Nov.
2001.

[8] “Chlamydia pneumoniae TW-183, complete
sequence,” Mar. 2025, Accessed: May 21,
2025. [Online]. Available: http://www.ncbi.
nlm.nih.gov/nuccore/NC_005043.1

[9] B. B. Matthews et al., “Gene Model An-
notations for Drosophila melanogaster: Im-
pact of High-Throughput Data,” G3 Genes|
Genomes|Genetics, vol. 5, no. 8, pp. 1721–
1736, 2015, doi: 10.1534/g3.115.018929.

[10] “boomphf - Rust.” Accessed: May 21,
2025. [Online]. Available: https://docs.rs/
boomphf/latest/boomphf/

https://doi.org/10.1093/bioinformatics/btaa911
https://doi.org/10.1101/2024.02.08.579510
https://doi.org/10.1007/s00778-014-0355-0
https://doi.org/10.1007/s00778-014-0355-0
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1093/bioinformatics/bth408
http://www.ncbi.nlm.nih.gov/nuccore/NC_005043.1
http://www.ncbi.nlm.nih.gov/nuccore/NC_005043.1
https://doi.org/10.1534/g3.115.018929
https://docs.rs/boomphf/latest/boomphf/
https://docs.rs/boomphf/latest/boomphf/

	Introduction
	Methods
	The Minimizer-Space Suffix Array Construction
	Our Implementation
	k-mer representation
	Constructing the index

	Piecewise Linear Regression (PLR) Accelerant
	Minimizer Match Significance

	Results
	Discussion
	Conclusion
	Bibliography

