Special Relativistic Ray-Tracing Techniques

Ryan ElKochta
relkocht@umd. edu

1 Introduction

Ray tracing is a technique used in rendering images of 3-
dimensional scenes where light is modeled as rays with in-
finitesimal thickness. For instance, as part of this course,
we have implemented a backwards path tracer. In the
backwards path tracer, light rays originate at the cam-
era and are traced into the scene. Surface bidirectional
reflectance distribution functions (BRDFs) are sampled at
each hitpoint to find new ray directions, and rays are
continuously bounced off of objects until they hit a light
source (or, until a light source is sampled using emitter
sampling techniques). The color that is seen at the origin
pixel on the image plane is the accumulation of light that
bounces in its direction.

Notably, in this simulation, we are tracing events in the
opposite direction that they would occur in reality. In re-
ality, light rays originate at emitters and “bounce” off of
objects until they reach the camera. However, to minimize
variance, the computer simulation typically works back-
wards in time, starting at the camera instead.

For classical ray tracing, this does not affect the physical
calculations much, as all objects in the scene are consid-
ered stationary, and as a result the only time-dependent
calculation that must be made is when performing ray-
intersections (as we always take the “first” intersection of
each ray). If all objects are stationary, then the speed of
light is not taken into account, and we get the same result
as if light rays traveled infinitely fast.

Our final project’s goal is to implement ray-tracing tech-
niques that do not assume stationary objects in the scene
and allow for a finite speed of light. We do this by replac-
ing the Newtonian physics in classical ray tracing to take
into account Einstein’s theory of special relativity [6]. We
compare our results to the classical ray tracer without rela-
tivistic corrections, and find that moving objects at speeds
approaching light speed has a significant effect on the pro-
duced image.

Our project was quite successful. We have implemented
our work on top of the Aris renderer [5]. Our work con-
siders the effects of the following generalizations of clas-
sical ray-tracing techniques: (1) fixing the speed of light
at a constant ¢, rather than infinite; (2) allowing objects
to move in the scene at variable velocities relative to each
other, potentially approaching the speed of light c; and (3)
accounting for the Doppler shift on each ray bounce. We
emphasize that our work does not move the entire scene

Tien Vu
vut@umd. edu

at a single velocity relative to the camera; instead, every
object is allowed to have its own velocity.

In Aris, we developed a new geometry type along with
modifications to the existing albedo and path integrators
to account for these effects. We also developed a handful
of demonstration scenes and rendered them using the new
techniques. Finally, we developed a framework to animate
scenes over time, and animated our demonstration scenes
to show special relativistic effects over time.

This paper is organized as follows: in section 2, we
provide a brief explanation of special relativity and the
Lorentz transformation. In section 3, we summarize pre-
vious work that has been done on special relativistic ray-
tracing and how it relates to our work. In section 4, we
explain the changes we made to the Aris renderer to in-
corporate relativity. In section 5, we provide graphics that
demonstrate our work along with commentary. Finally, in
sections 7 and 8, we conclude with a summary of our find-
ings and details on the division of work between the two
of us.

2 Background

2.1 Special Relativity

Einstein’s theory of special relativity follows from two pos-
tulates [3][6]:

+ The vacuum speed of light c is a constant in all inertial
(non-accelerating) frames of reference, independent
of the velocity of any involved objects.

« The laws of physics do not depend on which reference
frame you are in, as long as it is non-accelerating.

These two postulates lead to some interesting implications;
most notably is that space and time now become inter-
twined and dependent on the reference frame of the ob-
server.

Say we have two reference frames S and S’, with S con-
sidered stationary and S’ moving at speed V relative to S.
Without loss of generality, we orient our reference frames
such that the origin of S and S’ coincide at time t = ¢" = 0,
i.e. the measured time in each reference frame (and note
that these are different!)

Consider a coordinate in S in both space and time
[x,y, 2 t]. Such a spacetime coordinate is typically called

an event. We can convert from an event in S to an event
[x",y’,2’,t'] in §” using the Lorentz transformation:

L -1 - .

X’=X+(y_, (X.V)—yt)v 2.1)
I4lE

, XV

¢ =yt -2 (22)

where X = (x,y,2), X = (x’,y’,2"), and c is the speed of
light.

3 Literature Review

This project was inspired by Daniel, Dolph, and Elien’s
work in [2]. The authors added support for certain spe-
cial relativistic effects to the POV-Ray ray tracer. They
assumed that all objects in the scene are moving at the
same velocity, and limited themselves to a stationary cam-
era. Within these assumptions, they explained a method to
perform ray intersections accounting for both the motion
of the object and the finite speed of light. They achieved
this by adding the (normalized to a ratio of c) velocity of
the object to the ray and computing the intersections as
normal. The hitpoints will be in the scene frame S’, rather
than the stationary camera frame S; they explain that they
can be transformed back into the S frame to find the “cor-
rect” intersection point. We note that in special relativity,
there is no “correct” reference frame, and this backwards
transformation is not necessary for our technique.

The authors then give the relativistic aberration equation

[2][3] which is used to transform ray directions d from the
camera frame S into the scene frame S’:

_J+(ﬁ((j-f/)+y)f/

-

dl

- (3.1)

y(1+d-V)
The combination of the Lorentz transformation and the
above equation allowed the authors to implement a rela-
tivistic albedo integrator.

Daniel, Dolph, and Elien also explain how to com-
pute the Doppler shift, wherein the wavelength of light is
shifted depending on the relative velocity of the observer.
The relativistic Doppler shift is given by [2][3]:

A=y(1+V-a) (3.2)

where A is the wavelength of the shifted rays Ay is the
wavelength initially emitted from the object, and d is the
ray direction in the observer frame.

The problem is that most ray tracers (including Aris)
do not represent ray colors as wavelengths, but instead as
(R, G, B) tuples. The authors explain that the RGB colors
can be converted to HSV to hue to wavelength, but do not
give much detail.

Our work expands upon [2] by removing the restriction
that objects in the scene move at the same speed, allow-
ing the camera to have a velocity, and implementing the

full path tracer (i.e. transforming rays and hitpoints recur-
sively, not just once). We also give more detail on how to
approximate the Doppler shift with RGB values.

Hsiung and Thibadeau [3] explain how to remove the
restriction that all objects in the scene move at the same
velocity using their multiple frame intersection technique.
The idea is to split the scene into multiple reference frames
Si, each moving at some velocity V; with respect to the sta-
tionary frame S. Each ray origin and ray direction pair is
transformed using the above techniques into each refer-
ence frame in the scene, the ray intersection test is per-
formed for each frame, and the intersection times are cal-
culated; these times are sorted to find the earliest intersec-
tion point.

The authors did implement this technique and give re-
sults, however as far as we can tell they did not implement
it recursively (i.e. implement a full path tracer). We could
not find their source code. We give more detail on how to
implement this in a recursive path tracer.

We could not locate any sources that explained how to
perform relativistic emitter hits or emitter sampling in ray
tracing; this project will explain how to do these.

The Lorentz transformation implies that an object mov-
ing at relativistic speeds will be measured as contracted in
the direction of motion. Terrell [8] shows that this effect
will appear to cancel out with the effects just from a finite
speed of light. So we should not expect to observe Lorentz
contraction.

4 Implementation

Our implementation consists of the following modifica-
tions to the Aris renderer: (1) the addition of the ini-
tial time f; as a scene parameter, along with an anima-
tion framework that uses this; (2) the implementation of a
RelativisticGeometry, which wraps the MeshGeometry
with support for objects moving at different velocities;
(3) the addition of a RelativisticAlbedoIntegrator, a
modification of the existing albedo integrator to perform
intersections using the method from [3]; (4) the addition
of a RelativisticIntegrator, a modification of the ex-
isting path integrator that uses the above methods; and (5)
consideration of the Doppler effect in both integrators.
We started from the latest commit Aris renderer avail-
able on GitHub, and added the instructor-provided ref-
erence implementations of area emitters, sampling func-
tions, dielectric BRDF, and the backwards path tracer.

4.1 Animations and t,

We added a scene (global) parameter ¢, which indicates
the start time of the rendering. Recall that since our ray-
tracing technique traces rays backwards in time, the pro-
duced image will show what the camera sees at time %, in
its reference frame; in other words, the rendered image de-
pends on the rays that reach the camera at time t.

We also developed an animation script, which runs Aris
multiple times to render multiple frames of a scene as time
moves forward. We used this script to produce a number
of special relativistic animations; we discuss these results
in section 5.

4.2 Relativistic Scene Geometry

We have added a new geometry implementation to Aris:
the RelativisticGeometry. This class stores a list of
ReferenceFrame objects, which are defined as follows:

@dataclass

class ReferenceFrame:
geometry: MeshGeometry
velocity: Tensor
brdf_i_offset: int

Each reference frame corresponds to a grouping of objects
in the scene moving at the same velocity. For example, a
scene with a rocket ship moving at 0.7¢ and a star moving
at 0.3c would have two reference frames: one for the rocket
ship, with a MeshGeometry containing all of the triangles
corresponding to the rocket ship, and another for the star,
containing a MeshGeometry containing all of the triangles
for the star.

In the configuration files for the geometry, the list of
paths to Blender . obj files has been replaced with a list of
list of paths, with each sublist corresponding to a different
reference frame. A new geometry option, betas, has been
added, allowing to specify the velocity of each reference
frame.

One issue that arose from storing multiple mesh ge-
ometries in the relativistic geometry is handling of BRDF
indices. In Aris, BRDFs are specified as a single list
specifying the BRDF for each .obj file in the mesh ge-
ometry. The mesh geometry ray_intersect() returns
geo_out.brdf_i, which specifies the index for the object
that each ray hit. The issue is that when we call the mesh
ray_intersect(), we get brdf_i indices that correspond
to the objects in that frame, not in the entire overall rela-
tivistic geometry.

Our solution to this problem was, when outputting
brdf_i in our ray_intersect() implementation, to add a
separate offset corresponding to which reference frame the
intersection was in. When calling the sampling functions
that use the primitive index, we first convert the prim-
itive index into a reference frame number and an index
within that reference frame, and wrap around that refer-
ence frame’s mesh geometry.

4.3 Relativistic Geometry Ray Intersec-
tions

Much of the programming for this project was
done in the ray_intersect() implementation for
RelativisticGeometry. We fill in the details for, and
implement, the multiple frame intersection technique

from [3]. The idea is that for every reference frame in the
scene, we transform the ray origins and directions into
that frame and fire the transformed rays into the frame’s
mesh geometry using the standard ray_intersect()
function.

Because special relativity intertwines space and time,
transforming points and directions from one reference
frame to another requires knowing not only the points and
directions in the old frame but also knowing the current
time in the old frame. To this end, we have modified the
relativistic ray_intersect() signature as follows:

def ray_intersect(self,
rays_o: Tensor,
rays_d: Tensor,
velocity: Tensor,
time: Tensor)
-> (GeometryOQutput, Tensor, Tensor)

The additional inputs are the velocity with respect to “sta-
tionary” (i.e. the same reference frame as the camera
movement) and the time in the reference frame of the ray
origins. For example, for the first set of rays that are fired
into the scene, we pass the camera velocity and ty,. The
additional outputs are the velocity of the hitpoints (in the
same frame as the inputs) and the time of the hit events
(in the reference frame of the hitpoints). This definition
ended up being a very good abstraction, as it allowed us
to account for relativity in the albedo and path integrators
relatively easily.

Our ray intersection works as follows: we loop over ev-
ery single reference frame in the scene. The first thing we
need is a way to find the relative velocity between the ray
origin points and each reference frame. For this, we use
the relativistic velocity addition equation [1] (note that we
are normalizing v to a factor of ¢, so ¢ = 1:

=

Yy ox(@xu)

U= ——=—— —
1+u -0 (14+y) 1+0-u

(4.1)

where ¥ is the velocity of a moving frame relative to the
observer, and #’ is the velocity of an object within that
moving frame, and y is computed in terms of 7.

We apply the above equation with 7 as the negative of
the origin points’ velocity (to get the velocity of the afore-
mentioned “stationary” frame in the origin points’ frame),
and #’ as the velocity of the current frame we’re looping
over in that “stationary” frame. This gives us i, the desired
relative velocity between the origins and and the current
frame.

Next, we use equations (2.1) and (2.2) to transform
rays_o rays_d, and the ray origin event times into the
current reference frame in the loop.

We ran into the following issue: equation (2.1) con-
tains a division by the relative velocity between the ob-
jects, but it is possible that the objects’ relative velocity is
zero, leading to division by zero. Our simple solution to
this was to have a small velocity threshold (which we set

to 0.00000001c), below which the rays are not transformed
at all.

Next, we fire the transformed rays into the current ref-
erence frame, and save the output along with the trans-
formed rays for this reference frame. Finally, we compute
the ray travel time in the hitpoints’ frame of reference as
(geo_out.points - rays_o_prime).norm(dim=-1) and
use this to calculate the intersection time of each ray as
observed in the ray origins’ frame. We save these times as
sortable_times and continue for every reference frame
in the scene.

After the loop fires rays into every reference frame,
we use torch.max() to calculate the indices of the refer-
ence frame where the latest intersection in time was seen
from the origin frame. We then construct and return a
GeometryOutput, where at each index we use the output
from the ray intersection in the reference frame whose
MeshGeometry had the most recent intersection. This fol-
lows from the work of Hsiung and Thibadeau [3]. We also
correct the brdf_i as described earlier.

4.4 Relativistic Albedo Integrator

Our RelativisticAlbedoIntegrator is the same as
the Aris built-in albedo integrator, except that we pass
both the camera velocity and the scene’s #, to the
RelativisticGeometry’s ray_intersect() call

4.5 Relativistic Path Tracer

Our relativistic path tracer is based on the instructor-
provided path tracer. Like in the relativistic albedo inte-
grator, we pass the camera velocity and the scene’s ¢, value
to the initial call to the relativistic ray_intersect. When
ray_intersect() returns the velocity and time values ¢
at each hitpoint, we simply pass these values to the next
call to ray_intersect() in the loop.

4.5.1 Emitter Hit

Surprisingly, the emitter hit logic did not require any mod-
ifications. The emitter_hit() function takes the points
and normals passed to it, along with the origin points
rays_o and directions rays_d to calculate the amount of
light added by the emitter hit. However, due to the way
our relativistic ray intersect logic works, both the rays_o
and the rays_d have already been transformed into the
same reference frame as the hitpoints. Thus, the calcula-
tions all happen in the reference frame of the hitpoints, so
the emitter hit calculation still works.

4.5.2 Emitter Sampling

Emitter sampling, however, does require some modifica-
tion. In the existing implementation, the issue is that the
points we sample on the emitter are in the reference frame
of the emitter, whereas the hitpoints we are connecting
with the emitter are in their own reference frame.

As aresult, we developed the following modifications to
handle relativistic emitter sampling. Denote the frame of
the emitter as E and the frame of the hitpoints as H. We
begin by calculating the velocity v, of the E frame with
respect to the H frame using equation (4.1). The velocity
of the H frame with respect to the E frame is vpe = —0,p,.

We sample points on the emitter in frame E as usual (us-
ing emitter.sample()). Next, we convert the hitpoints
(in whose frame we also have time f) into the E frame
using equations (2.1) and (2.2). We then use the distance
in the E frame to calculate the ray travel time in the E
frame, and from this the time we hit each emitter sam-
pled point (again in E). We then convert the sampled
points on the emitter along with their times t, back into
the H frame. Finally, we calculate the visibility directions
d_target_point in the H frame as the direction from the
hitpoints to the emitter-sampled points.

After all this, we call emitter.le() to calculate the L,
term. This function did require one modification: we pass
it the velocity and H-frame times of the hitpoints, as this is
required to perform the visibility check using the relativis-
tic ray_intersect(). The distances for the final emitter
sampling calculation are given in the H frame.

4.6 Doppler Effect

The Doppler effect is the change in the frequency of a wave
to an observer when the source of the wave is moving. As
the Doppler effect applies to waves and not just noise, the
same effect on the frequency of the wavelength of light
can be calculated and rendered, albeit with a few interme-
diate steps to convert the RGB of the pixels to HSV, con-
vert the hues of HSV to wavelength, compute the Doppler
shift accounting for the Lorentz factor y, and finally con-
vert back from wavelength to HSV and HSV to RGB. And
of course, all of these conversions utilize PyTorch’s Tensor
operations such that they are performed for many pixels
at once.

One point of interest is how the Doppler effect is applied
to "even" colors, such as pure white with an RGB value
of (255,255,255) or a gray like (100,100,100). Naively,
one might attempt to convert these RGB values directly
to HSV and then to wavelength. However, these "even"
colors are not able to be presented by a single wavelength
as the visible light spectrum does not include a value that
directly maps to white. In reality, white and "even" colors
are represented by an even amount of every other wave-
length of light. Thus, a Doppler shift on these "even" colors
directly from their RGB values will not induce any shift
in the resulting wavelength. To account for this, every
pixel’s RGB values must be split into separate red, green,
and blue color channels before conversion to HSV and then
to wavelength. While this may not be the most physically
accurate method, it accomplishes the task in a reasonable
manner by breaking these "even" colors into three sepa-
rate, wavelength-representable colors.

4.6.1 RGB to HSV

As per Wikipedia, conversion from RGB to HSV is a rela-
tively simple set of steps which are as follows [4]:
Obtaining hue:

M = max(R, G, B) (4.2)
m = min(R, G, B) (4.3)
C =range(R,G,B) =M —m (4.4)
0, C=0

o % mod 6, M =R
H=60"x1 %, (4.5)

ol + 2, M=G

RG 44 M=B

Obtaining value:

V =M x 100 (4.6)

Obtaining saturation:

S= {0’ V=0 (4.7)

% X 100, otherwise

4.6.2 Hue to Wavelength

Conversion from the hue in HSV to wavelength can be ac-
complished in a variety of ways. For the sake of simplicity,
a table of hue to wavelength mappings from Wikipedia’s
Spectral Color page [7] was loaded into Aris and then in-
terpolated using numpy:.

4.6.3 Doppler Shift

The Doppler shift itself is a simply application of formula
3.2 to modify the original wavelength depending on the
velocity of the viewed object relative to the camera.

The strength of this effect is made configurable via the
variable s such that:

AL =A-A (4.8)

A = Ms + A (4.9)

4.6.4 Wavelength to Hue

The conversion from wavelength to HSV was performed in
the same manner as the inverse above, with a slight modifi-
cation to account for the fact that numpy’s interpolate()
function only accepts monotonically increasing x values.
Since wavelength only maps to hue, the saturation and
value from the original HSV are combined with the newly
Doppler-shifted hue.

4.6.5 HSV to RGB

Unfortunately, the nature of the RGB to HSV conversion
does not lend itself to cleanly inverting the process as
was done with wavelengths and HSV. Once again as per
Wikipedia, the conversion from RGB to HSV is as follows

[4]:

S =— 4.10
100 ()
Vv
Vi=— 4.11
100 ()
H
= 4.12
50° (4.12)
Obtaining chroma and an intermediate value X:
C=V'x§ (4.13)
X=Cx(1-|H mod2-1]|) (4.14)
Obtaining intermediate RGB values:
(C,X,0), 0<H <1
(X,C,0), 1<H <2
(0,C,X), 2<H <3
(Ro, Go, By) = , (4.15)
(0,X,C), 3<H <4
(X,0,C), 4<H <5
(C,0,X), 5<H <6
Obtaining final RGB values:
m=V'-C (4.16)

(R, G, B) = (R() +m, G() +m, Bo + m) (417)

4.6.6 Application to Relativistic Path Tracer

The application of the Doppler effect to the relativistic path
tracer was relatively simple, as it involved applying the
Doppler effect wavelength modification to every bounce
of the ray according to the velocity of the object.

5 Experimental Results

5.1 Albedo Integrator

The initial albedo renderings of a cube moving through the
scene (see figure 1) demonstrate the visual warping of the
object moving at 80% the speed of light considering only
the rays from the object itself to the camera.

5.2 Path Tracing Integrator

The path tracing renderings of the cube (see figure 2 fur-
ther demonstrate the affect special relativity has on both
the cube itself and the surrounding scene, particularly re-
garding the light hitting the diffuse surface of the cube and

the shadows, which seem to precede the cube.

Interestingly, in figure 2(b), the entire front face of the
cube is black. This is due to the camera witnessing the unlit
front face of the cube before it reached the lighting behind
it.

Additionally, when the cube is moving right, a rotational
effect is witnessed by the camera (see figure 3). This is
easily explained by the fact that the front right edge of the
cube is viewed by the camera first, while the other edges
follow over time. As the speed increases, the entire right
side of the cube is visible while the front is almost not.
Moreover, the right side is very dark for the same reason
as the unlit front face when the cube is moving away from
the camera.

In our submission, you'll also find a file
cube-right-80percent-c.gif showing the cube at
0.8c as it moves to the right over time. This animation
also visualizes the way the shadows move as the cube
moves very well. The shadows appear to precede the
cube because, physically speaking, the light of the emitter
reaches the cube far sooner than the camera. As a result,
the shadows "show the future" in a sense, showing where
the cube is located according to the emitter as opposed
to where the cube is according to the camera. This effect
should be offset by the time it takes for light to travel
from the walls to the camera, which is why the effect is
not extremely pronounced.

Finally, the path tracing rendering of the cbox scene
(see figure 4 more clearly visualizes the way the integra-
tor accounts for the views of objects in their local refer-
ence frame. The mirror ball in figure 4(b) reflects a view
of a longer shadow and a much closer dielectric ball. Be-
cause the light reflected off of the mirror ball takes time to
travel to the camera, the ball is "reflecting the future". Tak-
ing a specific example, first, the light of the dielectric ball
reaches the camera first. Then the light of the mirror ball,
reflecting the dielectric ball traveling towards the back of
the scene, reaches the camera. Naturally, this results in a
state where the camera shows effectively a later scene than
that of the mirror ball. This explanation also applies to the
longer shadow reflection which is the state of the shadow
when the mirror ball moves towards the camera and away
from the area light.

5.3 Doppler Shift
5.3.1 Albedo Integrator

The albedo renderings of a spaceship
(credit and thanks to CptKirk on Sketchfab
https://sketchfab.com/3d-models/republic-venator-star-
destroyer-le4aaa57565d4f098d01cf9c89e4ele6) moving
right (see figure 5 clearly demonstrates the Doppler
effect on the wavelengths of light reaching the camera.
Additionally, figure 6 shows how the transition of the
Doppler effect becomes smaller as the camera witnesses
more of the ship moving away from it.

One aspect of this Doppler effect implementation is how

readily the light shifts out of the visible spectrum. This
implementation simply clamps the wavelengths to the vis-
ible spectrum, hence the flat red color. The Doppler effect
strength modification (see eq. 4.9) comes in handy for this
particular case, tuning down the strength of the Doppler
shift such that it is still visible to the camera. However,
doing so is not particularly useful for an Albedo rendering
as it simply spreads out the visible Doppler effect across
the object.

5.3.2 Path Tracing Integrator

Figure 7 shows the Doppler effect applied to the path
traced renderings of the cube from section 5.2. Note the
blue shift of the cube as it approaches the camera com-
pared to the red shift of the cube as it moves away. The
aforementioned red shift is quite difficult to see in figure
7(c). However, this figure displays a more interesting ef-
fect where the light reflected onto the ceiling of the scene
shows the full visible light spectrum, "pulled apart" by the
Doppler effect.

6 Discussion

The objects and scenes rendered in section 5 were selected
for a variety of reasons. A checkered cube was created to
better visualize the warping effects of the finite speed of
light, especially when the warping affects one side of the
cube more than the other. Additionally, the length of the
spaceship made it easier to find a position in which the
Doppler effect only applied to part of the object. At 0.8c,
the fact that the spaceship is entirely red shows that the
ship is almost entirely moving away from the camera at
any point in time visible to the current camera. In fact, ob-
jects moving a 0.8c generally had difficulty visualizing the
Doppler effect, so the path tracer renderings of the Doppler
effect used 0.4c instead.

7 Conclusion

In section 2 and 3, the background was laid for the Aris
extension detailed in section 4. After implementation, the
rendered images were listed in section 5 wherein objects
warped and Doppler shifted in accordance with special rel-
ativity and the literature.

Regarding future work, we would want to see several ex-
tensions added to this Aris extension. The first would be
the implementation of reference frames that are accelerat-
ing and not just moving at relativistic speeds. Addition-
ally, as previously mentioned, the Doppler effect could be
made more accurate using representations of the individ-
ual wavelengths composing the visible light in the scene
as opposed to only red, green, and blue channels (although
figure 7(c) demonstrates that this still produces a realistic
spectrum of light when Doppler shifted). Finally, for the
purposes of visualization, we would have liked to create

an alternative to ¢y where instead we specify the initial po-
sition of an object. This would prevent having to hunt for
an object in a side by repeatedly creating albedo renders
with varying f, to fit the object in the camera’s view.

8 Division of Work

Ryan focused on the reading and writing the literature and
background required for the implementation and worked
alongside Tien to develop much of the relativistic path
tracer. Tien focused on the implementation of the Doppler
effect and produced the final renderings and their associ-
ated analyses.

References

[1] Shirish (SO wuser 160162). What are the
Lorentz Transformation equations when the
relative velocity of an entity is in an ar-
bitrary direction? Physics Stack Exchange.
URL:https://physics.stackexchange.com/q/562815
(version: 2020-06-30). eprint: https : / / physics .
stackexchange . com / q / 562815. URL: https :
//physics.stackexchange.com/q/562815.

[2] Jeremy Daniel, Cyrus A V Dolph, and Jean-Emile
Elien. “Relativistic Ray-Tracing: The Appearance of
Rapidly Moving Objects”. In: (1997).

[3] Ping-Kang Hsiung and Robert Thibadeau. “Spacetime
visualization of relativistic effects”. In: Proceedings of
the 1990 ACM Annual Conference on Cooperation. CSC
’90. Washington, D.C., USA: Association for Comput-
ing Machinery, 1990, pp. 236-243. 1SBN: 0897913485.
DOI: 10.1145/100348.100384. URL: https://doi.
org/10.1145/100348.100384.

[4] HSL and HSV. en. Page Version ID: 1258384559. Nov.
2024. URL: https://en.wikipedia.org/w/index.
php?title=HSL_and_HSV&oldid=1258384559 (vis-
ited on 12/11/2024).

[5] Geng Lin. Aris Renderer. https : / / github . com/
CMSC740-UMD/aris-renderer-student. 2023.

[6] C.Mpller. The Theory of Relativity. International se-
ries of monographs on physics. Clarendon Press,
1972. 1SBN: 9780198512561.

[7] Spectral color. en. Page Version ID: 1244084386. Sept.
2024. URL: https://en.wikipedia.org/w/index.
php?title=Spectral _color&oldid=1244084386
(visited on 12/11/2024).

[8] James Terrell. “Invisibility of the Lorentz Contrac-
tion”. In: Phys. Rev. 116 (4 Nov. 1959), pp. 1041-1045.
por: 10.1103/PhysRev.116.1041. URL: https://
link.aps.org/doi/10.1103/PhysRev.116.1041.

A Appendix

Begins on next page.

https://physics.stackexchange.com/q/562815
https://physics.stackexchange.com/q/562815
https://physics.stackexchange.com/q/562815
https://physics.stackexchange.com/q/562815
https://doi.org/10.1145/100348.100384
https://doi.org/10.1145/100348.100384
https://doi.org/10.1145/100348.100384
https://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=1258384559
https://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=1258384559
https://github.com/CMSC740-UMD/aris-renderer-student
https://github.com/CMSC740-UMD/aris-renderer-student
https://en.wikipedia.org/w/index.php?title=Spectral_color&oldid=1244084386
https://en.wikipedia.org/w/index.php?title=Spectral_color&oldid=1244084386
https://doi.org/10.1103/PhysRev.116.1041
https://link.aps.org/doi/10.1103/PhysRev.116.1041
https://link.aps.org/doi/10.1103/PhysRev.116.1041

N

a) Stationary 0.0c (b) Away from Camera 0.8¢
) Toward Camera 0.8c d) Right 0.8c

Figure 1: Albedo rendering of checkered cube at rest and moving at 0.8c.

(a) Stationary 0.0c (b) Away from Camera 0.8c

(c) Toward Camera 0.8¢ (d) Right 0.8c

Figure 2: Path tracer rendering of checkered cube at rest and moving at 0.8c.

(a) Right 0.4c (b) Right 0.99¢

Figure 3: Path tracer rendering of checkered cube moving to the right at various speeds.

(a) Stationary (b) Left Ball Away from Camera and Right Ball Moving Towards Cam-
era 0.4c

Figure 4: Path tracer rendering of mirror and dielectric balls.

(a) Before Doppler effect (b) After Doppler effect

Figure 5: Albedo rendering of a space ship travelling to the right at 0.4c with and without the Doppler effect.

(a) 0.6c (b) 0.8¢

Figure 6: Albedo rendering of a space ship travelling to the right at various speeds with the Doppler effect.

10

(a) Right 0.4c (b) Toward Camera 0.4c

(c) Away from Camera 0.4c

Figure 7: Path tracer rendering of checkered cube moving at 0.4c.

11

	Introduction
	Background
	Special Relativity

	Literature Review
	Implementation
	Animations and t0
	Relativistic Scene Geometry
	Relativistic Geometry Ray Intersections
	Relativistic Albedo Integrator
	Relativistic Path Tracer
	Emitter Hit
	Emitter Sampling

	Doppler Effect
	RGB to HSV
	Hue to Wavelength
	Doppler Shift
	Wavelength to Hue
	HSV to RGB
	Application to Relativistic Path Tracer

	Experimental Results
	Albedo Integrator
	Path Tracing Integrator
	Doppler Shift
	Albedo Integrator
	Path Tracing Integrator

	Discussion
	Conclusion
	Division of Work
	Appendix

